Synthetic Chiral Macrocyclic Crown Ligands: A Short Review

Scott T. Jolley, Jerald S. Bradshaw* and Reed M. Izatt

Department of Chemistry and Contribution No. 253 from the Institute for Thermochemical Studies Brigham Young University, Provo, Utah 84602 Received July 6, 1981

J. Heterocyclic Chem., 19, 3 (1982).

Introduction.

An important characteristic of synthetic macrocyclic multidentate ligands (crown compounds) is that they complex with a wide variety of metal, ammonium and diazonium cations. Another important feature of cation complexation by macrocycles is the selectivity often shown towards one cation in a closely related series of cations. For example, 18-crown-6 forms a much more stable complex in either water or methanol solvent with K+ than with any of the other alkali metal cations (1). Many biological functions also involve cation complexation. Hemin, chlorophyll, vitamin B-12 and many other molecules are metal containing complexes that are vital to the systems they serve. In nature, enzymes exhibit the property of selectivity to a remarkable degree. Enzymatic reactions are catalyzed so selectively that the reaction occurs the same way every time.

Almost as soon as the synthetic macrocyclic compounds became known through the work of Pederson (2), chemists realized that asymmetric derivatives of these molecules could serve as models for the study of chiral recognition in enzymatic and other reactions. Since that time, the design and synthesis of chiral molecules to effect specific chemical changes has been accomplished by several investigators (3-7).

Natural macrocyclic polysugars (known as the cyclodextrins) exhibit chiral recognition and behave as model enzymes (8-10). The first synthetic chiral macrocyclic compounds were reported in 1972 by Wudl and Gaeta (11) and since then a host of different chiral macrocycles have been synthesized. Cram and his coworkers first began reporting their excellent work on chiral binaphthyl macrocyclic compounds in 1973 (12) and shortly thereafter Lehn, Stoddart and others reported their work on chiral crown synthesis (4-7). This short review summarizes the synthetic work on chiral macrocyclic ligands to the end of 1980, gives a listing of these compounds and briefly reports on their uses.

Chiral Macrocyclic Ligands with Binaphthyl Subcyclic Units.

Rotation about the carbon-carbon single bond of 2,2'-dihydroxy-1,1'-binaphthyl is restricted enough so that this compound can be resolved into its R and S isomers.

SCHEME I

CH3
OH(R)
C, A = CH2N(CH2CH2)20
OH(R)
D, A = CH2OAC; R = AC
E, A = CH2OH; R = H
F, A = CH2BT
G, A = CH3
H, A = CH3; R = (CH2CH2O)2H
I, A = CH3; R = (CH2CH2O)2TS

$$\frac{A}{A} = \frac{A^2 C}{A^2 C^2} = \frac{A^2 C}{A^$$

Cram and his coworkers have used the binaphthyl compounds to make a large number of chiral macrocyclic polyether ligands. In general these chiral binaphthyl crowns were prepared by reacting one to three equivalents of optically pure 2,2'-dihydroxy-1,1'-binaphthyl (or a derivative thereof) with the necessary oligoethyleneglycol ditosylate in tetrahydrofuran/potassium t-butoxide or potassium hydroxide (3,12-17).

Preparation of (S,S)-2,3,4,5-di-1,2-(3-methylnaphtho)-13,14,15,16-di(1,2-naphtho)-1,6,9,12,17,20-hexaoxacyclo-docosa-2,4,13,15-tetraene (Compound **28**, see Scheme I) (3).

Racemic 2,2'-dihydroxy-1,1'-binaphthyl (**B** in Scheme I) was stirred at 160° for 5 days in the presence of 4-(butoxymethyl)morpholine to form the 3,3'-bis(N-morpholinomethyl) derivative (**C**). This compound was in turn dissolved in acetic anhydride and refluxed for 8 days to form

Table I
Chiral Macrocyclic Compounds Derived from the Binaphthyl Unit (a)

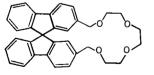

Crown Substituents [cccc R/S Mp (Bp) *Ccccc *Cccccccc *Ccccccccc *Ccccccc *Ccccccc *Cccccccc *Ccccccccc *Ccccccccc *Ccccccccc *Ccccccccc *Cccccccccc *Ccccccccc *Ccccccccc *Cccccccc *Ccccccccc *Ccccccccc *Ccccccccc *Ccccccccccc			-		• • • • • • • • • • • • • • • • • • • •		
1 n = 0, R = R' = H	Crown	Substituents	$[\alpha]$	R/S	Mp (Bp) °C	% Yield	References
2	1	n = 0: R = R' = H		S			
3							
4							
5					-		
6					•		
7					_		
8					- <u>-</u>		
9 n = 3; R = R' = CH,OCH,CO,CH, - 05.7 S glass 51 14 10 n = 4; R = R' = CH,OCH,CO,CH, - 25.7 S glass 44 14 11 n = 5; R = R' = CH,OCH,CO,CH, - 19.5 R glass 54 14 12 n = 3; R = R' = CH,OCH,CO,H - 10.74 S glass 54 14 13 n = 5; R = R' = CH,OCH,CO,H - 10.74 S glass 90 14 14 n = 5; R = R' = CH,OCH,CO,H - 15.0 R glass 90 14 15 n = 4; R = R' = CH,CH,CO,H - 15.0 R glass 50 14 16 n = 4; R = R' = CH,CH,CO,H - 15.0 S glass 82 14 17 n = 4; R = R' = CH,CH,CO,H + 12.0 S glass 81 14 18 n = 4; R = R' = CH,CH,CO,H + 12.0 S glass 81 14 19 n = 4; R = R' = CH,CH,CO,H - 9.5 S glass 81 14 19 n = 4; R = R' = CH,CH,CO,H - 94 S glass 55 14 19 n = 4; R = R' = CH,CH,CO,H - 94 S glass 85 14 19 n = 4; R = R' = CH,SH - 11 S glass 85 14 19 n = 4; R = R' = CH,SH - 11 R glass 91 92 20 n = 4; R = R' = CH,SH - 11 R glass 91 92 21 n = 4; R = R' = CH,SH - 11 R glass 91 92 22 R = R' = H - 221 S,S 123-126 31 13,20 23 R = R' = H - 222 S,S 123-126 31 13,20 24 R = R' = H - 12 R,R 13,20 25 R = CH,OH, R' = H + 170 R,R oil 28 20 R CH, R' = H + 152 R,R foam 64 3 20 R CH, R' = H + 152 R,R foam 64 3 3 20 20 R CH, R' = H + 152 R,R foam 64 3 3 20 20 R CH, R' = H + 152 R,R foam 64 3 3 20 20 R CH, R' = H + 152 R,R foam 64 3 3 20 20 R CH, R' = H + 152 R,R foam 64 3 3 30 R CH,R' = H + 110 R,R glass 76 3,20 3 3,20 3 3 20 3 R CH,R' = H + 110 R,R glass 77 3 3 3 20 3 20 3 R CH,OCH,OC,CH, R' = H + 110 R,R glass 77 3 3 3 20 3 20 3 20 3 20 3 20 3 20 3					Ψ.		14
10				R	glass		14
11					glass	51	14
12					glass	44	14
13			– 19.5		glass	54	14
14			-107.4	S	glass	65	14
14			-24.4	S	glass	90	14
15		$n = 5$; $R = R' = CH_2OCH_2CO_2H$	-15.0	R	glass	50	
16	15	$n = 4; R = CH_2OCH_2CO_2H,$			Ü		
16		$R' = CH_2OH$	+ 24.2	R	glass	82	14
17	16	_=			- <u>-</u> .		
18	17				٠.		
19		n = 4: $R = R' = CH$. SCH CH CO H		Š	<u> </u>		
20 n = 4; R = R' = CH,SH		$n = 4 \cdot R = R' = CH \cdot CH \cdot CO \cdot H$			*.		
21						89	
22 R = R' = H							
(solvate) 23 R = R' = H (solvate) (solvate) (solvate) (solvate) 24 R = R' = H (solvate) (solvate) 25 R = CH ₂ OH, R' = H 26 R = CH ₂ OH, R' = H 27 R = CH ₂ OH, R' = H 28 20 R = CH ₂ OH, R' = H 29 R = CH ₃ , R' = H 29 R = CH ₃ , R' = H 29 R = CH ₃ , R' = H 29 R = CH ₃ , R' = H 29 R = CH ₃ , R' = H 20 R = CH ₄ OH, R' = H 21 R,R 22 R,R 23 R = CH ₃ OH, R' = H 24 R = CH ₄ OH, R' = H 25 R = CH ₄ OH, R' = H 26 R = CH ₄ OH, R' = H 27 R = CH ₃ R' = H 28 R = CH ₃ R' = H 29 R = CH ₃ , R' = H 20 R = CH ₄ OH, R' = H 21 R,R 22 R = CH ₄ OH, R' = H 23 R = CH ₄ OH, R' = H 24 R = CH ₄ OH, R' = H 25 R = CH ₄ OH, R' = H 26 R = CH ₄ OH, R' = H 27 R = R 28 R = CH ₄ OH, R' = H 28 R = CH ₄ OH, R' = H 29 R = CH ₄ OH, R' = H 20 R = CH ₄ OH, R' = H 21 R = R 22 R = CH ₄ OH, R' = CH ₃ 23 R = CH ₄ OCH ₄ CO ₄ CH, R' = H 24 R = CH ₄ OH, R' = CH ₃ 25 R = CH ₄ OH, R' = CH ₃ 26 R'' = R = B = CH ₄ CO ₄ CH ₄ R' = H 27 R = R 28 R = CH ₄ OH, R' = CH ₃ 29 R = CH ₄ OH, R' = CH ₃ 20 R = CH ₄ OH, R' = CH ₃ 20 R = CH ₄ OH, R' = CH ₃ 21 R'' = R = B = CH ₄ CO ₄ CH ₃ R' = H 22 R'' = R = B = CH ₄ CO ₄ CH ₃ R' = H 24 R'' = R = B = CH ₄ CO ₄ CH ₃ R' = H 25 R'' = CH ₄ CH ₃ OH, R' = CH ₃ , B = H 26 R'' = CH ₄ CH ₄ OH, R' = CH ₃ , B = H 21 R'' = R 22 R'' = CH ₃ CH ₄ OH, R' = CH ₃ , B = H 22 R'' = CH ₃ CH ₄ OH, R' = CH ₃ , B = H 24 R'' = R = B = R' R' = CH ₃ OH, R' = CH ₃ , B = H 25 R'' = CH ₃ CH ₄ OH, R' = CH ₃ , B = H 26 R'' = CH ₃ CH ₂ OH, R' = CH ₃ , B = H 27 R = R 28 R = CH ₃ CH ₃ OH, R' = CH ₃ , B = H 29 R = CH ₃ CH ₃ OH, R' = CH ₃ , B = H 20 R = R'' = CH ₃ CH ₃ OH, R' = CH ₃ , B = H 21 R = R = R'' = CH ₃ CH ₃ OH, R' = CH ₃ , B = H 25 R = CH ₃ CH ₃ OH, R' = CH ₃ , B = H 27 R = R = R = R = CH ₃ CH ₃ OH, R' = CH ₃ , B = H 29 R = R = R = R = CH ₃ CH ₃ OH, R' = CH ₃ , B = H 20 R = R = R = R = CH ₃ CH ₃ OH, R' = CH ₃ , B = H 22 R = CH ₃ CH ₃ OH, R' = CH ₃ CH ₃ OH, R' = CH ₃ CH, CH ₃ C					•		
18,20 23	22	$\mathbf{n} = \mathbf{n} = \mathbf{n}$		5,5	123-126	31	18,20
Solvate Solv	99	D D' II					
24 R = R' = H meso	40	$\mathbf{n} = \mathbf{n} = \mathbf{n}$		R,R	123-126		18,20
25 R = CH ₂ OH, R' = H	0.4	B B: **	(solvate)				
26 R = CH ₂ Cl, R' = H			meso		283-284	2	18
27 R = CH ₃ , R' = H			+ 170	R,R	oil	28	20
27			+122	R,R	glass	76	3,20
28 R = CH ₃ , R' = H			+ 152	R,R	foam	32	
29 R = CH ₃ , R' = H			-152	S,S	foam		
30 R = CH(CH ₃) ₂ , R' = H +71 R,R foam 75 3 31 R = C(CH ₃) ₂ OH, R' = H +73 R,R foam 28 3 32 R = CH ₂ OCH ₂ CO ₂ CH ₃ , R' = H +116 R,R glass 77 3 33 R = CH ₂ OCH ₂ CO ₂ H, R' = H +110 R,R glass 76 3 34 R = CH ₃ , R' = CH ₃ +135 R,R glass 28 3 35 R = CH ₃ , R' = CH ₃ -134 S,S glass 28 3 36 R' = R = B = Br, R' = H +124 R,R 189-191 91 3,21 37 R'' = R = B = CH ₂ CO ₃ CH ₃ , R' = H -87 S,S 264-265 89 3 38 R'' = R = B = CH ₂ CO ₃ CH ₃ , R' = H S,S 174-175 98 3 39 R'' = R = B = CH=CH ₃ , R' = H -52 S,S glass 47 3 40 R'' = R = B = CH=CH ₃ , R' = H -180 S,S >360 50 3 41 R'' = R = B = Si(CH ₃) ₃ , R' = H -122 S,S 289-291 45 3 42 R'' = R = B = Si(CH ₃) ₃ , R' = H -122 S,S 289-291 45 3 43 R'' = R = B = CH ₂ CO ₃ CH ₃ , B = H +172 R,R 135-143 69 22 44 R'' = R = Br, R' = CH ₃ , B = H +172 R,R glass 6 22 45 R'' = CH ₃ CH ₂ OH, R' = CH ₃ , B = H +164 R,R glass 60 3 46 R'' = CH ₃ CH ₂ OH, R' = CH ₃ , B = H +164 R,R glass 60 13 47 R'' = CH ₃ CH ₂ OH, R' = CH ₃ , B = H +164 R,R glass 60 13 48 R'' = CH ₃ CH ₂ OH, R' = CH ₃ , B = H +164 R,R glass 40 13 49 -141 S,S,R 247-249 58 13 50 R = Br +16 R,R foam 68 3 51 R = H +99 R,R 211-212 90 3 52 R = CH ₃ CH ₃ CH ₃ CH +93 R,R foam 70 3	29	$R = CH_3, R' = H$	+44.2	S,R	foam		
31 R = C(CH ₃) ₂ OH, R' = H +73 R,R foam 28 3 32 R = CH ₂ OCH ₂ CO ₂ CH ₃ , R' = H +116 R,R glass 77 3 33 R = CH ₂ OCH ₂ CO ₂ H, R' = H +110 R,R glass 76 3 34 R = CH ₃ , R' = CH ₃ +110 R,R glass 76 3 35 R = CH ₃ , R' = CH ₃ +110 R,R glass 28 3 36 R' = R = B = Br, R' = H +124 R,R l89-191 91 3,21 37 R'' = R = B = CH ₃ CO, R' = H -87 S,S 264-265 89 3 38 R'' = R = B = CH ₃ CO, CH ₃ , R' = H S,S 174-175 98 3 39 R'' = R = B = CH ₂ CO ₂ CH ₃ , R' = H -52 S,S glass 47 3 40 R'' = R = B = SO ₃ (Ba) ₃ , R' = H -180 S,S >360 50 3 41 R'' = R = B = C(CH ₃) ₃ , R' = H -180 S,S >360 50 3 42 R'' = R = B = Si(CH ₃) ₂ -O-silica gel, R' = H R,R 135-143 69 22 42 R'' = R = Br, R' = CH ₃ , B = H +172 R,R 135-143 69 22 43 R'' = R = Br, R' = CH ₃ , B = H +164 R,R glass 60 3 46 R'' = CH ₂ CH ₂ OH, R' = CH ₃ , B = H +164 R,R glass 60 3 47 R,R 21 S,S S,S S,S S,S S,S S,S S,S S,S S,S S,	30	$R = CH(CH_3)_2, R' = H$	+71		_		
32 R = CH ₂ OCH ₂ CO ₂ CH ₃ , R' = H + 116 R,R glass 77 3 33 R = CH ₂ OCH ₂ CO ₂ H, R' = H + 110 R,R glass 76 3 34 R = CH ₃ , R' = CH ₃ + 135 R,R glass 28 3 35 R = CH ₃ , R' = CH ₃ - 134 S,S glass 28 3 36 R" = R = B = Br, R' = H + 124 R,R 189-191 91 3,21 37 R" = R = B = CH ₂ CO ₂ CH ₃ , R' = H -87 S,S 264-265 89 3 38 R" = R = B = CH ₂ CO ₂ CH ₃ , R' = H S,S 174-175 98 3 39 R" = R = B = CH ₂ CO ₂ CH ₃ , R' = H -52 S,S glass 47 3 40 R" = R = B = SO ₃ (Ba) ₂ , R' = H -180 S,S >360 50 3 41 R" = R = B = C(CH ₃), R' = H -122 S,S 289-291 45 3 42 R" = R = B = Si(CH ₃) ₂ O-silica gel, R' = H R,R 135-143 69 22 43 R" = R = Br, R' = CH ₃ , B = H +172 R,R 135-143 69 22 44 R" = R = CH ₂ CH ₂ OH, R' = CH ₃ , B = H +164 R,R glass 60 3 46 R" = CH ₂ CH ₂ OH, R' = CH ₃ , B = H +164 R,R glass 60 3 47 -223 S,S glass 40 13 48 -175 S,S,S glass 40 13 49 -141 S,S,R 247-249 58 13 50 R = Br +16 R,R foam 68 3 51 R = H +99 R,R 211-212 90 3 52 R = CH ₂ CH ₂ OH, R' = CH ₃ +93 R,R foam 70 3	31	$R = C(CH_3)_2OH, R' = H$	+ 73		_		
33 R = CH ₂ OCH ₂ CO ₂ H, R' = H +110 R,R glass 76 3 34 R = CH ₃ , R' = CH ₃ +135 R,R glass 28 3 35 R = CH ₃ , R' = CH ₃ -134 S,S glass 28 3 36 R" = R = B = Br, R' = H +124 R,R 189-191 91 3,21 37 R" = R = B = CH ₃ CO, CH ₃ , R' = H -87 S,S 264-265 89 3 38 R" = R = B = CH ₃ CO, CH ₃ , R' = H S,S 174-175 98 3 39 R" = R = B = CH ₂ CO, CH ₃ , R' = H -52 S,S glass 47 3 40 R" = R = B = SO ₃ (Ba) ₂ , R' = H -180 S,S >360 50 3 41 R" = R = B = SO ₃ (Ba) ₂ , R' = H -122 S,S 289-291 45 3 42 R" = R = B = Si(CH ₃) ₂ -O-silica gel, R' = H R,R 135-143 69 22 43 R" = R = Br, R' = CH ₃ , B = H +172 R,R 135-143 69 22 44 R" = R = CH ₂ CH ₂ OH, R' = CH ₃ , B = H +164 R,R glass 6 22 45 R" = CH ₂ CH ₂ OH, S = H +164 R,R glass 60 3 46 R" = CH ₂ CH ₂ OH, S = H +164 R,R glass 60 3 47 R = R = R + H + H + H + H + H + H + H + H + H +	32	$R = CH_2OCH_2CO_2CH_2$, $R' = H$					
34 R = CH ₃ , R' = CH ₃	33				T.		
35 R = CH ₃ , R' = CH ₃	34				₹.		
36 R" = R = B = Br, R' = H					٠.		
37 R" = R = B = CH ₃ CO, R' = H					_		
38 R" = R = B = CH ₂ CO ₂ CH ₃ , R' = H 39 R" = R = B = CH=CH ₂ , R' = H 40 R" = R = B = SO ₃ (Ba) _{1/2} , R' = H 41 R" = R = B = SO ₃ (Ba) _{1/2} , R' = H 42 R" = R = B = C(CH ₃) ₃ , R' = H 43 R" = R = B = Si(CH ₃) ₂ -O-silica gel, R' = R = Br, R' = CH ₃ , B = H 43 R" = R = Br, R' = CH ₃ , B = H 44 R" = R = CH ₂ CH ₂ OH, R' = CH ₃ , B = H 45 R" = CH ₂ CH ₂ OH, R' = CH ₃ , B = H 46 R" = CH ₂ CH ₂ OH, R' = CH ₃ , B = H 47 -223 S,S glass 40 13 47 -175 S,S,S glass 40 13 48 -175 S,S,S glass 40 13 49 -141 S,S,R 247-249 58 13 50 R = Br 51 R = H 52 RR 53 RR 60 3 61 RR 62 RR 63 RR 64 RR 65 RR 65 RR 66 RR 67 RR 68 RR 68 RR 69 RR 60 RR							
R" = R = B = CH=CH ₂ , R' = H			-61		•		
40 R" = R = B = SO ₃ (Ba) _{1/2} , R' = H -180 S,S > 360 50 3 41 R" = R = B = C(CH ₃) ₃ , R' = H -122 S,S 289-291 45 3 42 R" = R = B = Si(CH ₃) ₂ -O-silica gel, R' = H R R R R R R R R R R R R R R R R R R		$R'' - R - P - CH_2CU_2CH_3$, $R - H_3$	50		_		
41 R" = R = B = C(CH ₃) ₃ , R' = H		$R'' = R - R - SO(R_0), R' = H$			-		
R" = R = B = Si(CH ₃) ₂ -O-silica gel, R' = H R' = H R" = R = Br, R' = CH ₃ , B = H R" = R = CH ₂ CH ₂ OH, R' = CH ₃ , B = H R" = CH ₂ CH ₂ OH, R' = CH ₃ , B = H R,R R" = CH ₂ CH ₂ OH, R' = CH ₃ , R" = CH ₂ CH ₂ OCH ₂ -polystyrene, R' = CH ₃ , R = B = H R,R RR R,R RR R,R RR R,R RR R		$R = R - B - 303(Ba)_{1/2}, R - B$					
R' = H R' = R = Br, R' = CH ₃ , B = H R'' = R = CH ₂ CH ₂ OH, R' = CH ₃ , B = H R,R R,R R,R R,R R,R R,R R,R R		$\mathbf{R} = \mathbf{R} = \mathbf{D} = \mathbf{C}(\mathbf{C}\mathbf{H}_3)_3, \mathbf{K}' = \mathbf{H}$	- 122	5,5	289-291	45	3
43 R" = R = Br, R' = CH ₃ , B = H + 172 R,R 135-143 69 22 14 R" = R = CH ₂ CH ₂ OH, R' = CH ₃ , B = H R,R glass 6 22 45 R" = CH ₂ CH ₂ OH, R' = CH ₃ , B = H + 164 R,R glass 60 3 46 R" = CH ₂ CH ₂ OCH ₂ -polystyrene, R' = CH ₃ , R = B = H R,R 22 47 -223 S,S foam 60 13 48 -175 S,S,S glass 40 13 49 -141 S,S,R 247-249 58 13 50 R = Br + 16 R,R foam 68 3 51 R = H + 99 R,R 211-212 90 3 52 R = CH ₃ + 93 R,R foam 70 3	42						
R" = R = CH ₂ CH ₂ OH, R' = CH ₃ , B = H R,R R" = CH ₂ CH ₂ OH, R' = CH ₃ , B = H R,R R" = CH ₂ CH ₂ OCH ₂ -polystyrene, R' = CH ₃ , R = B = H R,R -223 S,S foam 60 13 48 -175 S,S,S glass 40 13 -141 S,S,R 22 47 R = Br +16 R,R foam 68 3 51 R = H +99 R,R 211-212 90 3 52 R = CH ₃ R = C	40						21
B = H R,R R'' = CH ₂ CH ₂ OH, R' = CH ₃ , B = H + 164 R'' = CH ₂ CH ₂ OCH ₂ -polystyrene, R' = CH ₃ , R = B = H R,R -223 S,S foam 60 13 48 -175 S,S,S glass 40 13 49 -141 S,S,R 247-249 58 13 50 R = Br +16 R,R foam 68 3 51 R = H +99 R,R 211-212 90 3 52 R = CH ₃		$R'' = R = Br, R' = CH_3, B = H$	+172	R,R	135-143	69	22
45 R" = CH ₂ CH ₂ OH, R' = CH ₃ , B = H + 164 R,R glass 60 3 46 R" = CH ₂ CH ₂ OCH ₂ -polystyrene, R' = CH ₃ , R = B = H -223 S,S foam 60 13 48 -175 S,S,S glass 40 13 49 -141 S,S,R 247-249 58 13 50 R = Br + 16 R,R foam 68 3 51 R = H + 99 R,R 211-212 90 3 52 R = CH ₃ + 93 R,R foam 70 3	14						
45 R" = CH ₂ CH ₂ OH, R' = CH ₃ , B = H + 164 R,R glass 60 3 46 R" = CH ₂ CH ₂ OCH ₂ -polystyrene, R' = CH ₃ , R = B = H R,R 22 47 -223 S,S foam 60 13 48 -175 S,S,S glass 40 13 49 -141 S,S,R 247-249 58 13 50 R = Br + 16 R,R foam 68 3 51 R = H + 99 R,R 211-212 90 3 52 R = CH ₃ + 93 R,R foam 70 3				R,R	glass	6	22
R" = CH ₂ CH ₂ OCH ₂ -polystyrene, R' = CH ₃ , R = B = H R,R -223 S,S foam 60 13 48 -175 S,S,S glass 40 13 -141 S,S,R 247-249 58 13 50 R = Br +16 R,R foam 68 3 51 R = H +99 R,R 211-212 90 3 52 R = CH ₃ R = C		$R'' = CH_2CH_2OH, R' = CH_3, B = H$	+ 164	R,R	glass		
R' = CH ₃ , R = B = H R,R -223 S,S foam 60 13 48 -175 S,S,S glass 40 13 49 -141 S,S,R 247-249 58 13 50 R = Br +16 R,R foam 68 3 51 R = H +99 R,R 211-212 90 3 52 R = CH ₃ P = CH	46	R" = CH ₂ CH ₂ OCH ₂ -polystyrene,			-		
47 48 -223 S,S foam 60 13 48 -175 S,S,S glass 40 13 49 -141 S,S,R 247-249 58 13 50 R = Br +16 R,R foam 68 3 51 R = H +99 R,R 211-212 90 3 52 R = CH ₃ +93 R,R foam 70 3				R,R			22
48 -175 S,S,S glass 40 13 49 -141 S,S,R 247-249 58 13 50 R = Br +16 R,R foam 68 3 51 R = H +99 R,R 211-212 90 3 52 R = CH ₃ +93 R,R foam 70 3			-223		foam	60	
49 -141 S,S,R 247-249 58 13 50 R = Br + 16 R,R foam 68 3 51 R = H + 99 R,R 211-212 90 3 52 R = CH ₃ + 93 R,R foam 70 3	48						
50 R = Br +16 R,R foam 68 3 51 R = H +99 R,R 211-212 90 3 52 R = CH ₃ +93 R,R foam 70 3	49				-		
51 R = H +99 R,R 211-212 90 3 52 R = CH ₃ +93 R,R foam 70 3		R = Br					
52 $R = CH_3$ +93 R_1R foam 70 3							
F9 D OH							
- 57.4 5,5 foam 42 3							
			- 57.4	3,3	ioam	42	3

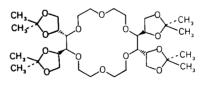
Table I Continued

Crown	Substituents	[α]	R/S	Mp (Bp) °C	% Yield	References
54	R = R' = H	-55	S,S	235-236	98	3
55	R = R' = H	+ 53	R, R	234-235	92	3
56	$R = R' = CH_3$	+ 22.2	R, R	foam	88	3
57	R = R' = Br	+98.1	S,S	foam	96	3
58	$R = CH_3, R' = H$	+35.4	R,R	foam	70	3
59	R = H	- 106	S,S		85	3
60	R = Br	+47.6	S,S	foam	94	3
61	$X = CH_2OCH_2, Y = (CH_2)_3$	- 193	S,S	foam	41	13
62	$X = CH_2OCH_2, Y = \bigcirc$	-214.9	S,S	foam	13	13
63	$X = CH_2OCH_2, Y =$	-241.9	S,S	foam	43	13
64	$X = CH_2OCH_2, Y = \bigcirc$	-218	S,S	glass	26	13
65	$X = CH_2CH_2CH_2, Y = $	-240	S,S	foam	29	13
66	$X = \bigcap$, $Y = \bigcirc$	-269	S,S	foam	43	13
67	X = X, $Y = X$	- 250	S,S	295-298	31	13
68	X = 0	-92	S	190-192	60	23
69	$X = H_2$	- 151	S	oil	90	23
70	X = 0	-42	\boldsymbol{S}	glass	50	23
71	$X = H_2$	-68	\boldsymbol{S}	oil	90	23
72		+68.2	$\boldsymbol{\mathcal{S}}$		7	24
73		-46.0	R		6	24

(a) Structures are shown in Figure 1.

SCHEME II

(76 IN FIGURE 2 AND TABLE II)


R = COOH

 $R = CH_2OH$

E. R = CH₂BR

(-)-(S)-D
$$\xrightarrow{\text{HBR}}$$
 (-)-(S)-E $\xrightarrow{\text{HO}}$ $\xrightarrow{\text{OOH}}$ (-)-(S)-A $\xrightarrow{\text{K-T-OBu/C}_6H_6}$ (76)

SCHEME III

(88 IN FIGURE 3 AND TABLE III)

R = CH₂CH=CH₂

 $R = CH_2CH_2OH$

E. $R = CH_2CH_2OTs$

$$\begin{array}{c} \text{D-Mannitol} & \begin{array}{c} \text{(CH}_3)_2\text{CO} \\ \hline \text{ZnCL}_2 \end{array} & \text{D-B} & \begin{array}{c} \text{KOH/CH}_2\text{= CHCH}_2\text{Br} \\ \hline \text{C}_6\text{H}_5\text{CH}_3 \end{array} & \text{D-C} \end{array}$$

3,3'-diacetoxymethyl-2,2'-diacetoxy-1,1'-binaphthyl (**D**). The 3,3'-bis(hydroxymethyl) derivative (**E**) was prepared by reducing the acetoxy compound with lithium aluminium hydride in ether. Reaction with dry hydrogen bromide gas in glacial acetic acid gave 3,3'-bis(bromomethyl)-2,2'-dihydroxy-1,1'-binaphthyl (**F**) which was in

SCHEME IV

turn reduced with lithium aluminium hydride to give the 3,3'-dimethyl derivative (G). Optical resolution of G was effected by recrystallizing the salt formed from a phosphate ester of G and cinchonine to give the (+)-(R) diol. The mother liquors from the above recrystallizations were hydrolyzed and reacted with strychnine to get pure (-)-(S) diol G ($[\alpha]_{578}^{25}$ -36.9°, c = 1.0, chloroform). Pure (-)-(S) diol G was then reacted with (2-chloroethoxy)ethyl-2-tetrahydropyranyl ether in the presence of DMF and sodium hydride to obtain the 2,2'-bis(5-hydroxy-3-oxa-1-pentyloxy) derivative (H). After hydrolysis, the tosyl derivative of this compound (I) was prepared and reacted with pure (-)-(S) binaphthol in sodium hydride and THF to give macrocycle (C) ((C)) (C)) (C)0 binaphthol in sodium hydride and THF to give macrocycle (C)1.

SCHEME V

More than seventy chiral macrocyclic ligands based on the binaphthyl moiety have been prepared using procedures similar to those shown above. These compounds are shown in Figure 1 and are listed in Table I along with some of their physical properties. There are hundreds of nonchiral compounds containing the binaphthyl moiety to be found in the references.

The chiral macrocyclic ligands with the binaphthyl unit have been used in chiral recognition studies. The complex of racemic α -phenylethylammonium hexafluorophosphate with (S,S)-22 was examined by proton nmr spectroscopy and found to contain 62% of the $(+)\alpha$ -phenylethyl-

Table II
Chiral Macrocyclic Compounds with Restricted Movement (a)

Crown		R/S	$[\alpha]$	Mp (Bp) °C	% Yield	References
74	n = -1	S	-318	gum		44
75	n = 0	S		171-172		44
76	n = 1	R	-78.5	149-151		44
77	n = 1	S	+80			44
78	n = 2	R	-71.8	125-126		44
79	n = 2	S	+71.2	125-126		44
80	n = 3	R	-58.1	143-144		44
81	n = 3	S	+ 59.5	144-145		44
82	n = 1	S,S	+ 50	324-326		44
83	n = 2	S,S	+137	gum		44
84	n = 3	S,S	+ 29	226-228		44
85	n = 1		+1.06		18	46,47
86	n = 2		-1.0		21	46,47

R = H

Table III
Chiral Macrocyclic Ligands Containing Carbohydrate Units (a)

Crown 87	Substituents $R = \bigvee_{m}^{m}$	[α]	Mp (Bp) °C oil	% Yield 13	References 4
88	$R = \bigcap_{n=0}^{\infty} \bigcap_{n=0}^{\infty}$	+7.6		14	4
89	R =	-6.9	60-66		52
90	$R = \bigcap_{N}^{CH_2OH} OH$	+24.6	69-71	90	4
91	$R = \qquad \stackrel{CH_1OAe}{\underset{H}{\longleftarrow}}$	+ 48.4		95	4
92	$R = {\overset{\text{CH}_2\text{OMe}}{\underset{\text{N}}{\leftarrow}}}$	+ 4.7		56	4
93	$R = \bigcap_{n} \bigvee_{n=1}^{\infty} A_n$		oil	10	4
94		+ 35.8	(120-122) 0.03 mm	19	53
95	R = OMe, R' = H, R'' = H	+ 102.9	115		54
96	$R = OMe, R' = H,$ $R'' = \bigcap_{m_e}^{m_e}$	+ 90.0		29	54
97	R'' = R = H, R' = OMe	+ 30.2	141-143	20	55
98	$R = H, R' = OMe,$ $R'' = \bigcap_{i=0}^{\infty} \bigcap_{i=0}^{\infty}$	+26.5		٠.	55
99	R = OMe, R' = H, R'' = H, n = 1	+ 77	134	13	56
100	R = OMe, R' = H, R'' = H, n = 0	+ 57	98	10	56
101	R = OMe, R' = H, R'' = H, n = 1	+ 37.6	52-56		54
102	R = OMe, R' = H, n = 1,	+69.4	44-46	40	54
	$R'' = \bigcap_{i} \bigcap_{m_i} \bigcap_{m_i} $				
103	R = R'' = H, R' = OMe, n = 1	-47.0	78-80		55
104	R = H, R' = OMe, n = 1	-98.4			55
	$R'' = \bigcap_{n=0}^{\infty} \bigcap_{n=0}^{\infty}$				

+30.6

57

Table III continued

Crown	Substituents	[lpha]	Mp (Bp) °C	% Yield	References
106	$R = \int_{\frac{1}{\mu}}^{\infty} \int_{M_{\bullet}}^{M_{\bullet}}$	+24.6			57
107		+60.1			57
108		-107.6	192-193	15	58
109		- 55.4	(207) 0.01 mm	34	58
110	$R = \int_{-\infty}^{\infty} \sqrt{\frac{1}{16}} , R' = CO_2 Et$	-11.9		33	59
111	$R = \bigcap_{i=1}^{n} \bigcap_{i \in I} A_i$, $R' = Me$	+ 38.8	106-108	86	59
112	$R = \bigcap_{n} $	- 22	147-149	7.5	59
113	$R = \int_{1}^{\infty} \int_{1}^{\infty} dt$	-1.6	50-54	4	60
114		+50.2	229-230		51,61
115		+164	238-240		61
116		+ 36.6	233-234		51,61
117		+ 180	167-167.5		61
118		+31	oil		56
119	R = H (b)	+ 115	132-134		51
120	$R = COCH_3$ (b)	+94	161.4		51
121	n = 1	+ 14.1	129-130	68	50
122	n = 2	+ 32.7	105-107	70	50
123		+41.2	gum	70	50
124		+84.4	gum	72	50
125	n = 1	+ 53.8	gum	65	50
126	n = 2	+93.4	gum	75	50

⁽a) Structures are shown in Figure 3. (b) The tetrahydropyran ring on the right of the structure 119-120 could be turned over.

ammonium salt and 38% of the (-)-isomer (18). Using an extraction process, Cram and coworkers showed that the complex of (S,S)-28 with the methyl phenylglycinate salt gave an enantiomer distribution constant (EDC) (20) of 12 compared with only 3 for (S,S)-22 (25). By varying structural parameters, an EDC as high as 18 has been obtained using this simple extraction technique. Very high EDC values (up to 52) were observed in a mixed deuterioacetonitrile-deuteriochloroform solvent system (26). Many dif-

ferent solvent systems, macrocyclic ligands, and amino acid salts have been evaluated by this method (27-30). The reverse concept has also been employed wherein racemic macrocyclic compound mixtures were totally resolved by the use of liquid-liquid chromatography and optically pure L-valine (31,32). Silica gel or polystyrene resins bound with optically active macrocyclic ligands with binaphthyl subcyclic units have been used to resolve amino acid and aminoester salts. The polystyrene bound hosts proved to

be the most effective resolving agents with separation ratios as high as 26 being observed (21,22,33-35). Cram and coworkers have also employed the use of liquid membranes (water/chloroform/water) to effect good enantiomer separation of racemic amino acid salts. Enantiomeric compounds with optical purities of 70 to 90% were obtained through the operation of a liquid membrane system (36.37).

Model enzyme catalysis reactions have been studied using the macrocyclic binaphthyl compounds (19,38). Transacylation reactions (thiolysis) between chiral hosts (thiols) and enantiomeric α-amino ester salts were carried out. Reaction rates between macrocyclic thiols and p-nitrophenyl aminoacid esters were compared with reaction rates obtained using open chain thiol analogs. Rate enhancements of up to 1700 times were found with macrocyclic ligands containing thiol groups versus open chain thiols. Chiral recognition factors of up to 8 were observed in these reactions where the (S) isomer of the macrocyclic thiol host hydrolyzed p-nitrophenyl L-phenylalanine faster than the (R) isomer did (19,38).

SCHEME VI

Asymmetric synthesis with chiral host-guest molecules have led to chiral products of up to 80% optical purity using these macrocycles as host molecules. Reactions studied were Michael addition, Gabriel synthesis and the alkylation of carbanions (39). Several excellent reviews

FIGURE 1: CHIRAL MACROCYCLIC COMPOUNDS
CONTAINING THE BINAPHTHYL UNIT

70,71

72,73

Table IV
Chiral Macrocyclic Compounds Derived from Tartaric Acid (a)

Crown	Substituents	[_o]	M (D) oc	~ **	
127	CONMe ₂	$[\alpha]$	Mp (Bp) °C	% Yield	References
128	CH ₂ O-CH ₂ Ph	. 10.2	40		68
129	CONMe ₂	+ 19.3	40	3	4
130	CO ₂ H	+84	65	12	68
131	CO ₂ Me	+ 24	60-70	95	68
132	CH,OH	+ 49	oil	85	68
133	CH₂SH	10.0	oil		70
134	CH ₂ OTs	-10.8			71
135	CH ₂ OCH ₂ Ph		.,		71
136	CH,OCOCH,	+ 5.0	oil	26	70
137	CH ₂ SCOPh	-9.6		61	70
138	CH ₂ OCH ₂ CH ₂ OCH ₂ Ph				71
139	CH ₂ OCH ₂ CH ₂ OH				71
140	CH ₂ OCH ₂ CH ₂ OTs				71
141	CH ₂ OCH ₂ CH ₂ SCOPh				71
142	CH ₂ OCH ₂ CH ₂ SH	+ 2.5			71
143	CH ₂ CH ₂ CH ₂ OCH ₂ Ph	+ 4.3			71
144	CH ₂ CH ₂ CH ₂ OH				71
145	CH ₂ CH ₂ CH ₂ OTs				71
146	CH ₂ OCH ₂ CH ₂ SCOPh				71
147	CH ₂ OCH ₂ CH ₂ SH	-26.9			71
148	CH ₂ OH	-20.9	221		71
149	CO,H	+67	oil 213	65	4,68
150	CH, CN			> 95	68
151	CH ₂ CO ₂ H	+ 19 23	136-137	75	68
152	CH ₂ OTs	-23 -9	197-201	95	68
153	COCI	-9	122-123	45	68
154	CH ₂ NMe ₂	-31.2	180	95	68
155	CONMe,	+108	oil	80	68,72
	2	+108.4	186	19	68
156	CONMe ₂	-108.3	181-182 181-182		73 73
157	CONHMe	+66	255	20	
158	$CON(n-Bu)_2$	+ 49	81	95	68
159	CH ₂ OCH,Ph	+ 5	oil	11	68
160	CH ₂ OA _C	-20.5	81	89	4 4
161	CH ₂ OCPh ₃		••	73	4
162	CO ₂ NMe ₄ ⁺			10	74
163	CONHCH ₂ CO ₂ Me		188		75
164	CONHCH ₂ CO ₂ NMe;		.00		75 75
165	CONHCH2CH2NH2		174-177	95	76
166	CONH(CH ₂) ₂ NHCO ₂ CH ₂ Ph		214-215	70	76
167	L-CONHCH(CO ₂ Me)CH ₂ SH	+41	204-205	66	5
168	LCONHCH(CO ₂ Me)CH ₂ SCH ₂ Ph	-44.5	139-140	87	5
169	(S)-CONHCH(CO ₂ Me)CH ₂ Ph	+7.4	195-196	~·	77
170	CONHCH ₂ CH ₂ -(3-indole)		223	65	76
171	CONHCH ₂ CH ₂ (4-imidazole)			· -	75
172	CONH(1-pyrene)	+11.3	248	57	73
173	CONH(1-pyrene)	-11.2	245	65	73
174	L-CONHCH(CO ₂ Me)CH ₂ (3-indole)	+8.2	135-138	65	73
175	D-CONHCH(CO ₂ Me)CH ₂ (3-indole)	8.3	135-138	77	73
176	LD-CONHCH(CO ₂ Me)CH ₂ (3-indole)	+ 3.0	145-150	70	73
177	DL-CONHCH(CO ₂ Me)CH ₂ (3-indole)	-3.0	145-150	70	73
178	L-CONHCH(CO2)CH2(3-indole)NMe4*				75
179	CONHCH, CH. 1				76
	сонсн,сн,сн сн,				.0
	с Р				
180	CONHCH, CH, N				76

Table IV continued

Crown	Substituents	$[\alpha]$	Mp (Bp) °C	% Yield	References
181 182	R = CH2OCH2Ph, X = O $R = CH2OCH2Ph, X = H2$	+ 4.3 + 17	oil oil	23 90	70 70
183 184	$R = CONMe_2$ $X = O$	+ 107	224 153-154	15 ~ 100	67,68 68 68
185 186	$X = NMe$ $R = CONMe_2$	+ 147	12	~ 100 13	68 74
187 188	$R = COOH$ $R = CONMe_2$	+40 +110	glass oil		74

(a) Structures are shown in Figure 4.

Table V
Chiral Macrocyclic Ligands Derived from Amino Acids (a)

Crown	Substitu	ients		$[\alpha]$	Mp (Bp) °C	% Yield	References
	R¹	R²	n				
189	CH ₃	CO ₂ CH ₃	1	+4.2	164-165		82
190	CH ₃	CO,Me	2	+3.6	121-122		82
191	PhCH,	CO,Me	1	-52.6	144-145		82
192	CH ₂ Ph	CO ₂ Me	2	-52.4	127-128		82
193	C ₆ H ₅	CH,	1	-34.2	157-159		82
194	n = 1	3		+14.4	173	10	84
195	n = 1			meso	243-244	8	84
196	n = 2			+17.35	257-259	18	84
197	n = 2			meso	247-208	15	84
198	n = 3			-47.55	207-209	20	84
199	n = 3			meso	185	18	84
200	$R = CH_1$			- 94.0	259-262	22	6
201	$R = CH(CH_3)_2$			-126.8	251-254	32	6
202	$R = CH(CH_3)_2$			- 159.6	dec	80	6
203	$R = CH(CH_3)_2$			-133.9	140.5-142.4	98	6
204	K = GH(GH3/2				98-99		11
205					94-95	40	11
206				-26.3	oil	70	83

(a) Structures are shown in Figure 5.

have been written by Cram concerning his work on hostguest chemistry with the binaphthyl macrocyclic compounds (40-42).

Lehn and coworkers have incorporated the chiral binaphthyl system into their bi- and tricyclic cryptands. The resulting chiral cryptands have been used in selective complexation and transport studies. Racemic potassium mandelate was enriched 10% in the (-) isomer using a chloroform/water membrane system (23,43). Stoddart and his coworkers have prepared a number of macrocyclic compounds containing both chiral binaphthyl and chiral carbohydrate moieties. One of their compounds exhibited chiral recognition for α-phenylethylamine·HPF₆ with an R:S ratio of 63:37 (24).

Other Chiral Macrocyclic Ligands with Optical Activity through Restricted Movement.

Other restricted systems besides binaphthyl have been used to impart chirality to marcocyclic systems. Prelog

and his coworkers have synthesized a number of chiral macrocyclic ligands from 9,9'-spirobifluorene derivatives.

Synthesis of (-)-(S)-2,2'-(2,5,8,11-tetraoxadodecano)-9,9'-spirobifluorene (Compound 76, see Scheme II) (44).

(±)-2,2'-Diacetyl-9,9'-spirobifluorene (**B** in Scheme II) (45) was reacted with bromine and sodium hydroxide to form the 2,2'-dicarboxy derivative (**C**) which was then reduced with sodium dihydro-bis(2-methoxyethoxy)-aluminate to form 9,9'-spirobifluorene-2,2'-dimethanol (**D**). The dimethanol compound was then esterified with (-)-camphanecarboxylic acid to effect isomeric separation. After hydrolysis, (-)-(S)-9,9'-spirobifluorene-2,2'-dimethanol [(-)-(S)-**D**] was reacted with hydrogen bromide in acetic acid to form dibromo compound **E**. The dibromide was added to a mixture of triethyleneglycol and potassium-t-butoxide in benzene to give the final macrocyclic compound (**76**), mp 149-151°, [\alpha] \frac{15}{6} -78.5°, c = 1, chloroform.

The chiral macrocyclic ligands containing the 9,9'-spiro-

bifluorene subcyclic unit are shown in Figure 2 and are listed in Table II. Chiral macrobicyclic ligands based on D-glycerol prepared by Haines and coworkers (46-47) are also given in Figure 2 and Table II.

The spiro macrocyclic ligands complexed α -phenylethylammonium salts better than they did the alkaline metal cations and a small degree of enantiomer selectivity was observed (44). The enantiomer selectivity of these compounds was evalutated by electrochemical methods. Enantiomer selectivity was not great with ratios of only 1.2 to 1. A number of circular dichroism measurements were also made with these macrocyclic compounds (7,48). Haines and coworkers have synthesized a number of interesting macrocyclic ligands that exhibit chirality due to restricted out, in-in, out isomerism (46,47).

Chiral Macrocyclic Ligands Containing Carbohydrate Units.

Some carbohydrate compounds are ideal as chiral starting materials for macrocyclic compounds. They contain an abundance of ethyleneoxy subunits, a high degree of functionality and most important, are an inexpensive source of optical activity. Stoddart and his coworkers as well as others have synthesized a large number of macrocyclic ligands incorporating carbohydrate molecules.

FIGURE 2: CHIRAL MACROCYCLIC COMPOUNDS
WITH RESTRICTED MOVEMENT

74-81

82-84

Since the carbohydrates contain several chiral centers, only those with C-2 symmetry can be used if more than one carbohydrate unit is to be incorporated into the ring. D-Mannitol, D-glucose, D-galactose, D-altrose and L-iditol

have all been used. In general, all the functional groups of the carbohydrate except the hydroxyl groups on the center two carbons are blocked. The macrocyclic compound is then prepared in the usual manner.

Synthesis of DD-1,2:1',2':5,6:5',6'-tetra-O-isopropylidene-3,3':4,4'-bis-O-oxydiethylenedi-D-mannitol (Compound 88, see Scheme III) (4,49).

D-Mannitol was reacted with acetone and zinc chloride to give the blocked 1,2:5,6-di-O-isopropylidene derivative (**B** in Scheme III). Compound **B** was then heated overnight in toluene in the presence of potassium hydroxide and allyl bromide to give the 3,4-di-O-allyl derivative (**C**). Treatment with ozone followed by a sodium borohydride reduction gave the "half-crown" diol (**D**). Reaction of the diol **D** with the bis-tosylate ester (Compound **E**), prepared from diol **D**, in DMSO/sodium hydride gave the final macrocyclic compound (**88**) as a liquid, $[\alpha]_D + 7.6^\circ$, c = 0.59, chloroform (Scheme III).

Some innovative synthetic methods have been employed in the preparation of macrocyclic ligands containing carbohydrate units. DeCesare and Gross have improved the yields of the carbohydrate crowns by employing a two phase synthesis system (50). Szejtli and his coworkers have used the addition of a hydroxy function across a vinyl ether to effect ring closure (51).

More than forty chiral macrocyclic ligands containing carbohydrate units have been prepared. Figure 3 shows these compounds and Table III gives the relevant physical properties and references.

Chiral macrocyclic ligands derived from carbohydrate precursors have not shown a great degree of enantiomer selectivity. Enantiomeric differentiation ratios of 62:38 for α-phenylethylamine·HPF₆ salt have been achieved using chiral compound 88 (4,52,62). Stoddart and his coworkers have studied the complexation of alkylammonium salts with their chiral carbohydrate macrocyclic ligands using a temperature dependent proton nmr technique. When the macrocycle has diastereotopic faces, the low temperature proton nmr technique has proven to be a good tool in observing diastereoisomeric α and β complexes (α -complex on one face, β complex on the other). At temperatures of -60° or lower, the complexation-solvationrecomplexation is slow on the nmr time scale. At those temperatures, isomer ratios $(\alpha:\beta)$ of as high as 97:3 were observed (55,57-59,60,61,63). Several reviews by Stoddart on his work have been published (64-66).

Chiral Macrocyclic Ligands Derived from Tartaric Acid.

Tartaric acid has proven to be an excellent starting material for the preparation of chiral macrocyclic ligands. It is readily available in both the (d) and (l) isomers and contains a high degree of functionality. Macrocycles containing tartarate chirality are prepared by much the same

Table VI Chiral Macrocyclic Compounds Derived from Other Chiral Acids (a)

Crown	R	Substituents R'	R"	$[\alpha]$	Мр (Вр) °С	% Yield	References
207					oil		86
208							86
209					(114-116) at		
					0.025 torr		87
210					(118-124) at		
					0.025 torr		87
211					42-43		85
212					63-64		86
213					oil		86
214					(110-115) at		
					0.025 torr		86
215				+41.65	(110-120) at		
					0.025 torr	31	86,88
216					(120-125) at		
					0.5 torr		86
217				+20.5	(130-132) at		
					0.4 torr	24	88
218				+20.74	(124-130) at		
					. 0.5 torr	25	88
219				+22.21	(138-142) at		
					0.7 torr	27	88
220							89
221							89
222							89
223					50-52		86
224					99-99.8		86
225							89
226					44-46		86
227				meso	109-110	6.5	90
228				meso	137	5.6	90
229				meso	136-137	3	90
230				meso	92	1.9	90
231				meso	160	8.4	90
232				meso	199-200	6.7	90
233							89
234					oil		86
235					94.5-95		86
236				meso	oil	67	91
237	СН,	Н	Н	-13.6 (S,S)	94	48.5	92
238	CH ₃	Н	H	+13.2 (R,R)	91-92	23.6	92
239	CH ₃	Н	H	meso	102-103	38.1	92
240	CH ₃	Н	OMe	-6.9 (S,S)	98-99	17.3	92
241	CH ₃	Н	Cl	-4.0 (R,R)	oil	75.8	92
242	H	C_6H_5	Н	-91 (R,R)	127-128	44	93
243	H	C_6H_5	Н	+87 (S,S)	126-128	51	93
244	H	C_6H_5	Н	meso	100-102	49	93
245	H	C ₆ H ₅	ОМе	+80.9(S,S)	140-142	28	93
246	CH ₃	Н		+46.5 (S,S)	(170/1 mm)	22.2	92
247	CH ₃	Н		-46.1~(R,R)	oil	17.3	92
248	СН,	H		meso	oil		92
249	H	C_6H_5		+90.7 (S,S)	76-87	42.7	93
250	CH ₃	Н		-27.3 (S,S)	80	23.5	92
251	CH ₃	Н			oil		92
252	CH ₃	Н		meso	oil		92
253	H	C_6H_5		+90.4 (S,S)	130-132	25.8	93
254	CH ₃	H		+57.8 (S,S)	58	22.7	92

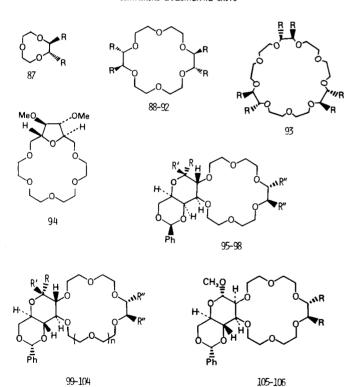

⁽a) Structures are shown in Figure 6.

Table VII
Chiral Macrocyclic Ligands Derived from Miscellaneous Sources (a)

Crown	Substit	uents	[lpha]	Mp (Bp) °C	% Yield	References
255	$R = CPh_3$	n = 1	-18.3	oil	59	47
256	$R = CPh_3$	n = 2	- 18.1	oil	40	47
257	R = H	n = 1	+ 12.9	oil	74	47
258	R = H	n = 2	+ 19.2	oil	63	47
259	$R = OCH_2Ph$					95
260	R = OH					95
261	R = SCOPh					95
262	R = SH		+ 47.7			95
263	$R = OCH_2Ph$					95
264	R = OH					95
265	R = SCOPh					95
266	R = SH		-14.1			95
267	n = 0		+ 36.5	oil	42	94
268	n = 1		+ 25.1	oil	37	94
269			+ 39.2	77-80	31	94

(a) Structures are shown in Figure 7.

FIGURE 3: CHIRAL MACROCYCLIC LIGANDS
CONTAINING CARBOHYDRATE UNITS

general procedure as those crowns containing carbohydrate units.

Synthesis of (2R,3R,11R,12R)(+)-N,N,N',N'',N''',N''',N'''' octamethyl-1,4,7,10,13,16-hexaoxacyclooctadecane-2,3,11,12-tetracarboxamide (Compound **155**, Scheme IV) (67,68).

The bis(N,N-dimethylamide) of L(+)-tartaric acid (69) was reacted with thallium ethoxide in DMF in the presence of bis(2-iodoethyl)ether. The reaction was heated

at 90° for 90 minutes, cooled, treated with water and then evaporated under vacuum. The residue was filtered over alumina and then recrystallized from acetone/heptane to give macrocycle 155, mp 186°, $[\alpha]_D^{25} = +108^\circ$, c = 1.5, chloroform (Scheme IV).

A considerable number of chiral macrocyclic ligands have been derived from tartaric acid. The structures and physical properties of these compounds are given in Figure 4 and Table IV, respectively.

The primary interest in the macrocyclic ligands synthesized from tartaric acid has been in their use as molecular catalysts for model enzyme studies (6,74-76,78). Lehn and Sirlin have compared the rates of thiolysis by compound 167 of a number of primary ammonium salts, specifically the p-nitrophenyl esters of some amino acids and di- and tripeptides (5). They observed that the salts of either the L-amino acids or peptides were selectively thiolyzed. There were definite structural effects as shown by the fact that the thiolysis of the p-nitrophenyl ester of the glycine-glycine salt was 15,000 times faster than that of the salt of L-proline-glycine (5). Behr and Lehn studied the nicotinamide-tryptophane charge-transfer interactions using these tartaric acid derived crown compounds (78). Matsui and Koga have shown that the length and make up of the thiol bearing side chain on the macrocycle have a marked effect on the rate of thiolysis (71). Experiments involving rate enhancement of pyridinium to dihydropyridine hydrogen transfer (76), membrane electrode enantiomer selectivity (71), asymmetric reductions (72,81) and chiral recognition elucidated by photophysical techniques (73) have also been carried out using tartaric acid based macrocycles. Reviews have been written by Lehn concerning work on chiral macrocyclic ligands derived from tartaric acid (79,80).

Chiral Macrocyclic Ligands Derived from Amino Acids.

FIGURE 3 (CONT.)

FIGURE 3 (CONT.)

118

119,120

A number of optically active macrocyclic ligands have been prepared using amino acids as the source of chirality. L-Alanine (6,82), L-aspartic anhydride (83), L-phenylalanine (82), D- α -phenylethylamine (82), L-proline (11), L-valine (6) and α -phenylglycine (84) have all been used to make a wide variety of compounds.

125,126

Preparation of 4,14-dimethyl-6,9,12-trioxa-3,15,19-triaza-bicyclo[15.3.1]heneicosa-1(21),17,19-triene-2,5,13,16-tetraone (Compound **200**, Scheme V) (6).

3,5-Pyridinedicarbonyl chloride and the t-butylester of L-alanine were reacted together in benzene and triethylamine (see Scheme V). The optically active diamide thus formed was then treated with trifluoroacetic acid to remove the t-butyl groups. Ring closure was effected by the addition of bis(2-bromoethyl)ether to the cesium salt of the diacid in DMF. The optically active macrocyclic ligand thus formed gave a rotation of -94°, c = 0.95, DMF (Scheme V). Macrocycle 200 was methylated and reduced to form the dihydropyridine derivative 203 (6).

Figure 5 shows the structures of the macrocyclic ligands derived from the amino acids and Table V lists their physical properties.

Most chiral crowns derived from amino acids have not

FIGURE 5: CHIRAL MACROCYCLIC COMPOUNDS

DERIVED FROM AMINO ACIDS

as yet been evaluated for their ability to effect chiral recognition or act as catalysts. Kellogg used the above synthesized dihydropyridine crowns to effect asymmetric reductions of a number of aromatic ketones. Optical yields as high as 86% have been achieved using these macrocycles (6). Some circular dichroism work has also been done on certain amino acid based macrocyclic ligands (82).

Macrocyclic Ligands Derived from Other Chiral Acids.

Optically active macrocyclic ligands have been prepared from several other chiral acids such as L-lactic acid, D-and L-mandelic acids and $di-\alpha,\alpha'$ -dimethylglutaric acid. Optically active propylene oxide which can be prepared from lactic acid has also been used.

Synthesis of (8S,12S)-8,12-dimethyl-5,6,8,9,11,12,14,15-octahydro[b]benzo-1,4,7,10,13-pentaoxacyclopentadecin (Compound 211, Scheme VI) (85).

L-(+) Lactic acid was reacted with dihydropyran in the presence of acid to form the blocked acid derivative which was then reduced to the blocked propane diol (A, Scheme VI). Compound A was then treated with tosyl chloride in pyridine to form the tosyl ester (B). The blocked tosyl derivative B was then reacted with A in DMF and sodium hydride. The chiral blocked dipropylene glycol (C) thus formed was deblocked in acidified methanol. Ring closure was achieved by treating glycol D with the ditosylate ester of 1,2-bis(2-hydroxyethoxy)benzene (E) in the presence of THF and sodium hydride (Scheme VI). Complete physical properties for compound 211 were not reported (85).

Figure 6 shows the structures of macrocyclic ligands derived from a variety of chiral acids and Table VI lists their physical properties.

The above synthesized compound (211) was used in circular dichroism studies (85). Bradshaw and his coworkers have used optically active macrocyclic ligands derived

CH₃

CH₃

СН₃

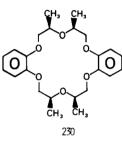


FIGURE 7: CHIRAL MACROCYCLIC LIGANDS
DERIVED FROM MISCELLANEOUS SOURCES

from lactic and mandelic acids in low temperature proton nmr studies (92,93).

269

Chiral Macrocyclic Ligands Derived from Miscellaneous Sources.

A number of other interesting chiral materials have been used to prepare optically active macrocycles. (+) 1,2-Cyclohexanediol (94), (+)- and (-)-camphane-2,3-diol (95) have been used to prepare chiral macrocyclic ligands. The macrocycles synthesized from camphanediol were used in thiolysis reactions and showed a significant rate increase for the thiolysis of *p*-nitrophenyl amino ester salts (95). Figure 7 shows these chiral ligands and Table VII lists their physical properties.

Acknowledgement.

National Science Foundation Grant CHE-8000059 supported this work.

REFERENCES AND NOTES

- (1) J. D. Lamb, R. M. Izatt, C. S. Swain and J. J. Christensen, J. Am. Chem. Soc., 102, 475 (1980).
 - (2) C. J. Pedersen, ibid., 89, 7017 (1967).
- D. J. Cram, R. C. Helgeson, S. C. Peacock, L. J. Kaplan, L. A. Domeier, P. Moreau, K. Koga, J. M. Mayer, Y. Chao, M. G. Siegel, D. H. Hoffman and G. D. Y. Sogah, J. Org. Chem., 43, 1930 (1978).
 W. D. Curtis, D. A. Laidler, J. F. Stoddart and G. H. Jones, J.

Chem. Soc., Perkin Trans. I, 1756 (1977).

- (5) J. M. Lehn and C. Sirlin, J. Chem. Soc., Chem. Commun., 949 (1978).
- (6) J. G. deVries and R. M. Kellogg, J. Am. Chem. Soc., 101, 2759 (1979).
 - (7) V. Prelog, Pure App. Chem., 50, 893 (1978).
 - (8) D. W. Griffiths and M. L. Bender, Advan. Catal., 23, 209 (1973).
 - (9) R. Breslow, Chem. Soc. Rev., 1, 533 (1972).
- (10) M. L. Bender and M. Komiyama, "Cyclodextrin Chemistry," Springer-Verlag, Berlin, 1978.
- (11) F. Wudl and F. Gaeta, J. Chem. Soc., Chem. Commun., 107 (1972). (12) E. P. Kyba, M. G. Siegel, L. R. Sousa, G. D. Y. Sogah and D. J.
- Cram, J. Am. Chem. Soc., 95, 2691 (1973).
- (13) E. P. Kyba, G. W. Gokel, F. deJong, K. Koga, L. R. Sousa, M. G. Siegel, L. Kaplan, G. D. Y. Sogah and D. J. Cram, *J. Org. Chem.*, 42, 4173 (1977).
- (14) D. J. Cram, R. C. Helgesen, K. Koga, E. P. Kyba, K. Madan, L. R. Sousa, M. G. Siegel, P. Moreau, G. W. Gokel, J. M. Timko and G. D. Y. Sogah, J. Org. Chem., 43, 2758 (1978).
- (15) M. Newcomb, G. W. Gokel and D. J. Cram, J. Am. Chem. Soc., 96, 6810 (1974).
- (16) F. deJong, M. G. Siegel and D. J. Cram, J. Chem. Soc., Chem. Commun., 551 (1975).
- (17) R. C. Helgeson, G. R. Weisman, J. L. Toner, T. L. Tarnowski, Y. Chao, J. M. Mayer and D. J. Cram, J. Am. Chem. Soc., 101, 4928 (1979).
- (18) E. B. Kyba, K. Koga, L. R. Sousa, M. G. Siegel and D. J. Cram, *ibid.*, **95**, 2692 (1973).
 - (19) Y. Chao and D. J. Cram, ibid., 98, 1015 (1976).
- (20) R. C. Helgesen, J. M. Timko, P. Moreau, S. C. Peacock, J. M. Mayer and D. J. Cram, *ibid.*, **96**, 6762 (1974).
 - (21) G. D. Y. Sogah and D. J. Cram, ibid., 97, 1259 (1975).
 - (22) G. D. Y. Sogah and D. J. Cram, ibid., 98, 3038 (1976).
- (23) B. Dietrich, J. M. Lehn and J. Simon, Angew. Chem., Int. Ed. Engl., 13, 406 (1974).
- (24) W. D. Curtis, R. M. King, J. F. Stoddart and G. H. Jones, J. Chem. Soc., Chem. Commun., 284 (1976).
 - (25) G. W. Gokel, J. M. Timko and D. J. Cram, ibid., 394 (1975).
 - (26) S. C. Peacock and D. J. Cram, ibid., 282, (1976).
- (27) G. W. Gokel, J. M. Timko and D. J. Cram, ibid., 444 (1975).
- (28) E. P. Kyba, J. M. Timko, L. J. Kaplan, F. deJong, G. W. Gokel and D. J. Cram, J. Am. Chem. Soc., 100, 4555 (1978).
- (29) S. C. Peacock, L. A. Domeier, F. C. A. Gaeta, R. C. Helgesen, J. M. Timko and D. J. Cram, *ibid.*, 100, 8190 (1978).
- (30) S. C. Peacock, D. M. Walba, F. C. A. Gaeta, R. C. Helgesen and D. J. Cram, *ibid.*, **102**, 2043 (1980).
- (31) R. C. Helgesen, K. Koga, J. M. Timko and D. J. Cram, ibid., 95,

- 3021 (1973).
- (32) J. M. Timko, R. C. Helgesen and D. J. Cram, *ibid.*, **100**, 2828 (1978).
- (33) L. R. Sousa, D. H. Hoffman, L. Kaplan and D. J. Cram, *ibid.*, 96, 7100 (1974).
- (34) L. R. Sousa, D. G. Y. Sogah, D. H. Hoffman and D. J. Cram, *ibid.*, 100, 4569 (1978).
 - (35) G. D. Y. Sogah and D. J. Cram, ibid., 101, 3035 (1979).
- (36) M. Newcomb, R. C. Helgesen and D. J. Cram, *ibid.*, **96**, 7367 (1974).
- (37) M. Newcomb, J. L. Toner, R. C. Helgesen and D. J. Cram, *ibid.*, **101**, 4941 (1979).
- (38) Y. Chao, G. R. Weisman, G. D. Y. Sogah and D. J. Cram, *ibid.*, 101, 4948 (1979).
- (39) G. D. Y. Sogah, I. B. Dicker, M. Lauer and D. J. Cram, Abstracts of 181st National Meeting of Am. Chem. Soc., ORGN 107 (1981).
- (40) D. J. Cram and J. M. Cram, Science, 183, 803 (1974).
- (41) D. J. Cram and J. M. Cram, Acc. Chem. Res., 11, 8 (1978).
- (42) D. J. Cram, R. C. Helgesen, L. R. Sousa, J. M. Timko, M. Newcomb, P. Moreau, F. deJong, G. W. Gokel, D. H. Hoffman, L. A. Domeier, S. C. Peacock, K. Madan and L. Kaplan, *Pure App. Chem.*, 43, 327 (1976).
- (43) J. M. Lehn, J. Simon and A. Moradpour, Helv. Chim. Acta., 61, 2407 (1978).
 - (44) V. Prelog and D. Bedekovic, ibid., 62, 2285 (1979).
 - (45) G. Haas and V. Prelog, ibid., 52, 1202 (1969).
- (46) B. J. Gregory, A. H. Haines and P. Karntiang, J. Chem. Soc., Chem. Commun., 918 (1977).
- (47) A. H. Haines and P. Karntiang, J. Chem. Soc., Perkin Trans. I, 2577 (1979).
- (48) A. P. Thoma, A. Viviani-Nauer, K. H. Schellenberg, D. Bedekovic, E. Pretsch, V. Prelog and W. Simon, Helv. Chim. Acta., 62, 2303 (1979).
- (49) W. D. Curtis, D. A. Laidler, J. F. Stoddart and G. H. Jones, J. Chem. Soc., Chem. Commun., 833 (1975).
 - (50) P. DeCesare and B. Gross, Synthesis, 458 (1979).
- (51) L. Toke, L. Fenichel, P. Bakó and J. Szejtli, Acta Chim. Acad. Sci. Hung., 98, 357 (1978).
- (52) W. D. Curtis, D. A. Laidler, J. F. Stoddart, J. B. Wolstenholme and G. H. Jones. *Carbohydrate Res.*, 57, C17 (1977).
- (53) J. A. Haslegrave, J. F. Stoddart and D. J. Thompson, *Tetrahedron Letters*. 2279 (1979).
- (54) D. A. Laidler and J. F. Stoddart, Carbodhydrate Res., 55, C1 (1977).
- (55) R. B. Pettman and J. F. Stoddart, Tetrahedron Letters, 457 (1979).
- (56) W. Hain, R. Lehnert, H. Rottele and G. Schroder, ibid., 625 (1978).
- (57) R. B. Pettman and J. F. Stoddart, ibid., 461 (1979).
- (58) D. A. Laidler and J. F. Stoddart, ibid., 453 (1979).
- (59) D. A. Laidler and J. F. Stoddart, J. Chem. Soc., Chem. Commun., 979 (1976).
- (60) D. G. Andrews, P. R. Ashton, D. A. Laidler, J. F. Stoddart and J. B. Wolstenholme, *Tetrahedron Letters*, 2629 (1979).
- (61) D. A. Laidler, J. F. Stoddart and J. B. Wolstenholme, ibid., 465 (1979).

- (62) W. D. Curtis, D. A. Laidler, J. F. Stoddart and G. H. Jones, J. Chem. Soc., Chem. Commun., 835 (1975).
 - (63) D. A. Laidler and J. F. Stoddart, ibid., 481 (1977).
 - (64) J. F. Stoddart, Chem. Soc. Rev., 8, 85 (1978).
- (65) A. C. Coxon, W. D. Curtis, D. A. Laidler and J. F. Stoddart, J. Carbohydrates Nucleosides Nucleotides, 6, 167 (1979).
- (66) J. F. Stoddart, "Synthetic Chiral Receptor Molecules from Natural Products" in "Progress in Macrocyclic Chemistry," Vol. 2, R. M. Izatt and J. J. Christensen, eds., Wiley-Interscience, New York, 1981, pp. 173-250.
- (67) J. M. Girodeau, J. M. Lehn and J. P. Sauvage, *Angew. Chem., Int. Ed. Engl.*, 14, 764 (1975).
- (68) J. P. Behr, J. M. Girodeau, R. C. Hayward, J. M. Lehn and J. P. Sauvage, *Helv. Chim. Acta*, **63**, 2096 (1980).
- (69) D. Seebach, H. Dorr, B. Bastani and V. Eyrig, Angew. Chem., Int. Ed. Engl., 8, 982 (1969).
- (70) N. Ando, Y. Yamamoto, J. Oda and Y. Inouye, Synthesis, 688
- (1978).
 (71) T. Matsui and K. Koga, Tetrahedron Letters, 1115 (1978).
- (72) Y. Shida, N. Ando, Y. Yamamoto, J. Oda and Y. Inouye, Agric. Biol. Chem., 43, 1797 (1979).
 - (73) P. Tundo and J. H. Fendler, J. Am. Chem. Soc., 102, 1760 (1980).
- (74) J. M. Lehn, P. Vierling and R. C. Hayward, J. Chem. Soc., Chem. Commun., 296 (1979).
- (75) J. P. Behr, J. M. Lehn and P. Vierling, ibid., 621 (1976).
- (76) J. P. Behr and J. M. Lehn, ibid., 143 (1978).
- (77) Y. Yasaka, T. Yamamoto, K. Kimura and T. Shono, Chem. Letters, 769 (1980).
 - (78) J. P. Behr and J. M. Lehn, Helv. Chim. Acta, 63, 2112 (1980).
 - (79) J. M. Lehn, Pure App. Chem., 50, 871 (1978).
 - (80) J. M. Lehn, ibid., 51, 979 (1979).
 - (81) L. Horner and W. Brich, Chem. Ber., 111, 574 (1978).
- (82) O. Kaneko, N. Matsuura, K. Kimur and T. Shono, Chem. Letters, 369 (1979).
- (83) A. Shanzer and E. Berman, J. Chem. Soc., Chem. Commun., 259 (1980).
- (84) M. Zinic, B. Bosnic-Kasnar and D. Kolbah, Tetrahedron Letters, 21, 1365 (1980).
- (85) M. P. Mack, R. R. Hendrixson, R. A. Palmer and R. G. Ghirardelli, J. Am. Chem. Soc., 98, 7830 (1976).
- (86) R. G. Ghirardelli and M. P. Mack, personal communication.
- (87) G. D. Malpass, R. A. Palmer and R. G. Ghirardelli, *Tetrahedron Letters*, 1489 (1980).
- (88) K. D. Cooper and H. M. Walborsky, J. Org. Chem., 46, 2110 (1981).
 - (89) D. G. Parsons, personal communication.
 - (90) D. G. Parsons, J. Chem. Soc., Perkin Trans. I, 245 (1975).
- (91) K. Kimura, H. Tamura, T. Tsuchida and T. Shono, Chem. Letters, 611 (1979).
- (92) B. A. Jones, J. S. Bradshaw and R. M. Izatt, J. Heterocyclic Chem., in press.
- (93) J. S. Bradshaw, S. T. Jolley and R. M. Izatt, J. Org. Chem., in press.
- (94) R. C. Hayward, C. H. Overton and G. H. Whitham, J. Chem. Soc., Perkin Trans. I, 2413 (1976).
- (95) S. Sasaki and K. Koga, Heterocycles, 12, 1305 (1979).